On a Non-local Gas Dynamics Like Integrable Hierarchy
نویسندگان
چکیده
We study a new non-local hierarchy of equations of the isentropic gas dynamics type where the pressure is a non-local function of the density. We show that the hierarchy of equations is integrable. We construct the two compatible Hamiltonian structures and show that the first structure has three distinct Casimirs while the second has one. The existence of Casimirs allows us to extend the flows to local ones. We construct an infinite series of commuting local Hamiltonians as well as three infinite series (related to the three Casimirs) of non-local charges. We discuss the zero curvature formulation of the system where we obtain a simple expression for the non-local conserved charges, which also clarifies the existence of the three series from a Lie algebraic point of view. We point out that the non-local hierarchy of Hunter-Zheng equations can be obtained from our non-local flows when the dynamical variables are properly constrained.
منابع مشابه
ar X iv : n lin / 0 60 80 10 v 2 [ nl in . S I ] 1 8 A ug 2 00 6 Dispersionless integrable equations as coisotropic deformations . Extensions and reductions
Interpretation of dispersionless integrable hierarchies as equations of coisotropic deformations for certain associative algebras and other algebraic structures is discussed. It is shown that within this approach the dispersionless Hirota equations for dKP hierarchy are nothing but the associativity conditions in a certain parametrization. Several generalizations are considered. It is demonstra...
متن کاملA Lax Operator Hierarchy for the New Fifth Order Integrable System
We consider the Lax representation of the new two-component coupled integrable system recently discovered by the author. Connection of the hierarchy of infinitely many Lax pairs with each other is presented.
متن کاملA Realization of Matrix KP Hierarchy by Coincident D-brane States
D-branes constitute an important part of the superstring theory in its nonperturbative description. Especially coincident multi D-brane states enable us to reproduce nonabelian guage theory in the low energy. From the mathematical point of view, on the other hand, a non-perturbative field theory must be formulated within the framework of a completely integrable system, namely a system whose who...
متن کاملExact Solution for Nonlinear Local Fractional Partial Differential Equations
In this work, we extend the existing local fractional Sumudu decomposition method to solve the nonlinear local fractional partial differential equations. Then, we apply this new algorithm to resolve the nonlinear local fractional gas dynamics equation and nonlinear local fractional Klein-Gordon equation, so we get the desired non-differentiable exact solutions. The steps to solve the examples a...
متن کاملLiouville integrable defects: the non-linear Schrödinger paradigm
A systematic approach to Liouville integrable defects is proposed, based on an underlying Poisson algebraic structure. The non-linear Schrödinger model in the presence of a single particle-like defect is investigated through this algebraic approach. Local integrals of motions are constructed as well as the time components of the corresponding Lax pairs. Continuity conditions imposed upon the ti...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004